organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-Ammonio-1-phosphonopentane-1phosphonic acid

V. V. Bon,* A. V. Dudko, A. N. Kozachkova and V. I. Pekhnyo

V.I. Vernadskii Institute of General and Inorganic Chemistry, Kyiv 03680, Ukraine Correspondence e-mail: bon@ionc.kiev.ua

Received 7 November 2008; accepted 20 November 2008

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.028; wR factor = 0.072; data-to-parameter ratio = 16.3.

The title compound, $C_5H_{15}NO_6P_2$, was obtained by the reaction of pentanenitrile with PCl₃ followed by the dropwise addition of water. The asymmetric unit contains one molecule, which exists as a zwitterion with a positive charge on the $-NH_3$ group and a negative charge on one of the phosphonic O atoms. The crystal structure displays $N-H\cdots O$ and $O-H\cdots O$ hydrogen bonding, which creates a three-dimensional network.

Related literature

For the biological activity of organic disphosphonic acids, see: Matczak-Jon & Videnova-Adrabinska (2005); Szabo *et al.* (2002); Tromelin *et al.* (1986). For comparable bond lengths, see: Allen *et al.* (1987).

Experimental

Crystal data C₅H₁₅NO₆P₂

 $M_r = 247.12$

Monoclinic, $P2_1/c$ a = 14.5502 (3) Å b = 7.1896 (1) Å c = 9.4855 (2) Å $\beta = 96.938$ (1)° V = 985.01 (3) Å³

Data collection

Bruker SMART APEXII CCD	23409 measured reflections
area-detector diffractometer	2471 independent reflections
Absorption correction: multi-scan	2225 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.043$
$T_{\min} = 0.848, \ T_{\max} = 0.961$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of
$vR(F^2) = 0.072$	independent and constrained
S = 1.06	refinement
2471 reflections	$\Delta \rho_{\rm max} = 0.44 \ {\rm e} \ {\rm \AA}^{-3}$
52 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$

Z = 4

Mo $K\alpha$ radiation

 $\mu = 0.45 \text{ mm}^-$

T = 100 (2) K $0.38 \times 0.36 \times 0.09 \text{ mm}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1N\cdots O4^{i}$	0.84 (2)	2.02 (2)	2.7584 (16)	146.7 (19)
$N1 - H2N \cdot \cdot \cdot O5^{ii}$	0.91 (2)	1.88 (2)	2.7799 (16)	169.4 (19)
$N1 - H3N \cdot \cdot \cdot O2^{iii}$	0.88 (2)	1.99 (2)	2.8451 (16)	162.9 (18)
$O1-H1O\cdots O2^{iii}$	0.79 (2)	1.85 (3)	2.6297 (15)	167 (3)
O3−H3O···O5 ⁱⁱⁱ	0.79 (3)	1.70 (3)	2.4884 (15)	175 (3)
$O6-H6O\cdots O4^{iv}$	0.83 (3)	1.72 (3)	2.5372 (14)	168 (3)
Symmetry codes: (i) -	-x + 1, -v, -z	+1; (ii) x, $-y$ -	$+\frac{1}{2}, z - \frac{1}{2}$; (iii) x, -y	$y = \frac{1}{2}, z = \frac{1}{2}$; (iv)

Symmetry codes: (i) -x + 1, -y, -z + 1, (ii) x, $-y + \frac{1}{2}$, $z - \frac{1}{2}$, (iii) x, $-y - \frac{1}{2}$, $z - \frac{1}{2}$, (iv) -x + 1, $y + \frac{1}{2}$, $-z + \frac{3}{2}$.

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2151).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bruker (2005). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Matczak-Jon, E. & Videnova-Adrabinska, V. (2005). Coord. Chem. Rev. 249, 2458–2488.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Szabo, C. M., Martin, M. B. & Oldfield, E. (2002). J. Med. Chem. 45, 2894–2903.
- Tromelin, A., El Manouni, D. & Burgada, R. (1986). Phosphorus Sulfur Relat. Elem. 27, 301–312.

supplementary materials

Acta Cryst. (2008). E64, o2436 [doi:10.1107/S1600536808038968]

1-Ammonio-1-phosphonopentane-1-phosphonic acid

V. V. Bon, A. V. Dudko, A. N. Kozachkova and V. I. Pekhnyo

Comment

Organic diphosphonic acids are potentially very powerful chelating agents used in metal extractions and have been tested by the pharmaceutical industry for use as efficient drugs preventing calcification and inhibiting bone resorption (Tromelin *et al.*, 1986, Matczak-Jon & Videnova-Adrabinska, 2005). Diphosphonic acids are used in the treatment of Paget disease, osteoporosis and tumoral osteolysis (Szabo *et al.*, 2002).

The asymmetric unit of the title compound contains one molecule, which exists as a zwitterion with positive and negative charges on the NH₃ group and one of the phosphonic oxygen atoms, respectively. The phosphorus atoms display slightly distorted tetrahedral geometries, each provided by three oxygen atoms and one carbon atom. Bond lengths and angles have normal values (Allen *et al.*, 1987).

There are no solvent water molecules in the asymmetric unit, which is unusual for α -aminodiphosphonic acids. This fact can be explained by the presence of the hydrophobic alkyl group. The structure is stabilized by a three-dimensional O—H···O and N—H···O hydrogen bonding network (Fig. 1, Table 1).

Experimental

Dry hydrogen chloride at about 278 K was brought into contact with the surface of a mixture of pentanenitrile (83.13 g, 1 mol) and PCl₃ (87.4 ml, 1 mol). After an hour water (54 ml, 3 mol) was added to the mixture dropwise. After a day the solution was treated by an excess amount of water and then vacuum distilled. The obtained solution was treated by a mixture of acetone and diethyl ether, yielding colourless crystals of the title compound.

Refinement

H atoms bonded to O and N atoms were located in a difference map. Other H atoms bonded to C atoms were positioned geometrically and refined using a riding model with C—H = 0.98 Å for CH₃ [$U_{iso}(H) = 1.5Ueq(C)$] and C—H = 0.99 Å for CH₂ [$U_{iso}(H) = 1.2Ueq(C)$]

Figures

Fig. 1. The asymmetric unit of the title compound showing the atom-labelling scheme and 50% probability displacement ellipsoids for the non-hydrogen atoms.

Fig. 2. Crystal packing of the title compound; projection along b axis. Dashed lines indicate hydrogen bonds.

1-Ammonio-1-phosphonopentane-1-phosphonic acid

Crystal data	
$C_5H_{15}NO_6P_2$	$F_{000} = 520$
$M_r = 247.12$	$D_{\rm x} = 1.666 {\rm Mg m}^{-3}$
Monoclinic, $P2_1/c$	Melting point: 562 K
Hall symbol: -P 2ybc	Mo <i>K</i> α radiation $\lambda = 0.71073$ Å
a = 14.5502 (3) Å	Cell parameters from 8806 reflections
b = 7.1896 (1) Å	$\theta = 2.8 - 28.4^{\circ}$
c = 9.4855 (2) Å	$\mu = 0.45 \text{ mm}^{-1}$
$\beta = 96.938 (1)^{\circ}$	T = 100 (2) K
$V = 985.01 (3) \text{ Å}^3$	Plate, colourless
Z = 4	$0.38 \times 0.36 \times 0.09 \text{ mm}$

Data collection

Bruker SMART APEXII CCD area-detector diffractometer	2471 independent reflections
Radiation source: fine-focus sealed tube	2225 reflections with $I > 2\sigma(I)$
Monochromator: graphite	$R_{\rm int} = 0.043$
T = 100(2) K	$\theta_{\text{max}} = 28.4^{\circ}$
φ and ω scans	$\theta_{\min} = 2.8^{\circ}$
Absorption correction: multi-scan (SADABS; Bruker, 2005)	$h = -19 \rightarrow 19$
$T_{\min} = 0.848, \ T_{\max} = 0.961$	$k = -9 \rightarrow 9$

23409 measured reflections	$l = -12 \rightarrow 12$
----------------------------	--------------------------

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.028$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.072$	$w = 1/[\sigma^2(F_o^2) + (0.0317P)^2 + 0.8863P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.06	$(\Delta/\sigma)_{\rm max} < 0.001$
2471 reflections	$\Delta \rho_{max} = 0.44 \text{ e } \text{\AA}^{-3}$
152 parameters	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct	

methods Primary atom site location: structure-invariant direct Extinction correction: none

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
P1	0.39648 (2)	0.07886 (5)	0.68586 (4)	0.00647 (9)
P2	0.28775 (2)	-0.24846 (5)	0.54892 (4)	0.00680 (9)
C1	0.30732 (9)	0.00397 (19)	0.54146 (14)	0.0067 (3)
C2	0.21901 (10)	0.1205 (2)	0.55184 (15)	0.0100 (3)
H2A	0.1914	0.0778	0.6366	0.012*
H2B	0.2383	0.2514	0.5692	0.012*
C3	0.14290 (10)	0.1183 (2)	0.42611 (16)	0.0139 (3)
H3A	0.1698	0.1489	0.3380	0.017*
H3B	0.1157	-0.0079	0.4153	0.017*
C4	0.06761 (12)	0.2576 (3)	0.4478 (2)	0.0239 (4)
H4A	0.0485	0.2381	0.5434	0.029*
H4B	0.0939	0.3844	0.4457	0.029*
C5	-0.01700 (12)	0.2475 (3)	0.3401 (2)	0.0238 (4)
H5A	0.0005	0.2714	0.2452	0.036*
H5B	-0.0620	0.3411	0.3624	0.036*
H5C	-0.0447	0.1234	0.3424	0.036*

supplementary materials

N1	0.34540 (9)	0.04748 (18)	0.40433 (12)	0.0075 (2)
01	0.20552 (7)	-0.29755 (15)	0.43309 (11)	0.0103 (2)
O2	0.26347 (7)	-0.29945 (15)	0.69151 (10)	0.0105 (2)
O3	0.37688 (7)	-0.33350 (15)	0.50568 (11)	0.0102 (2)
O4	0.48097 (7)	-0.03933 (15)	0.68442 (11)	0.0106 (2)
O5	0.35286 (7)	0.08211 (14)	0.82242 (10)	0.0092 (2)
O6	0.41170 (7)	0.28091 (15)	0.63361 (11)	0.0103 (2)
H1N	0.4006 (14)	0.015 (3)	0.406 (2)	0.015 (5)*
H2N	0.3439 (14)	0.172 (3)	0.387 (2)	0.022 (5)*
H3N	0.3141 (13)	-0.009 (3)	0.331 (2)	0.014 (5)*
H1O	0.2192 (17)	-0.283 (4)	0.356 (3)	0.032 (6)*
H3O	0.3713 (18)	-0.416 (4)	0.450 (3)	0.040 (7)*
H6O	0.4518 (18)	0.340 (4)	0.684 (3)	0.046 (8)*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
P1	0.00764 (16)	0.00625 (17)	0.00532 (16)	-0.00016 (12)	-0.00004 (12)	-0.00001 (12)
P2	0.00865 (17)	0.00661 (17)	0.00509 (16)	-0.00071 (12)	0.00064 (12)	-0.00014 (12)
C1	0.0075 (6)	0.0081 (6)	0.0045 (6)	0.0003 (5)	0.0007 (5)	0.0000 (5)
C2	0.0085 (6)	0.0107 (7)	0.0107 (6)	0.0022 (5)	0.0010 (5)	-0.0017 (5)
C3	0.0119 (7)	0.0176 (8)	0.0114 (7)	0.0050 (6)	-0.0014 (5)	-0.0005 (6)
C4	0.0146 (8)	0.0292 (10)	0.0264 (9)	0.0094 (7)	-0.0043 (7)	-0.0081 (7)
C5	0.0140 (7)	0.0316 (10)	0.0249 (9)	0.0078 (7)	-0.0024 (6)	0.0026 (7)
N1	0.0082 (6)	0.0087 (6)	0.0058 (5)	-0.0007 (4)	0.0011 (4)	-0.0002 (4)
01	0.0113 (5)	0.0123 (5)	0.0070 (5)	-0.0025 (4)	0.0002 (4)	-0.0008 (4)
O2	0.0142 (5)	0.0105 (5)	0.0068 (4)	-0.0006 (4)	0.0018 (4)	0.0006 (4)
O3	0.0116 (5)	0.0083 (5)	0.0109 (5)	0.0009 (4)	0.0022 (4)	-0.0026 (4)
O4	0.0095 (5)	0.0122 (5)	0.0096 (5)	0.0026 (4)	-0.0004 (4)	-0.0001 (4)
O5	0.0123 (5)	0.0087 (5)	0.0067 (4)	-0.0001 (4)	0.0016 (4)	-0.0003 (4)
O6	0.0134 (5)	0.0079 (5)	0.0089 (5)	-0.0031 (4)	-0.0007 (4)	0.0013 (4)

Geometric parameters (Å, °)

P1—O4	1.4959 (10)	С3—НЗА	0.9900
P1—O5	1.5099 (10)	С3—Н3В	0.9900
P1—O6	1.5593 (11)	C4—C5	1.504 (2)
P1	1.8492 (14)	C4—H4A	0.9900
P2—O2	1.4846 (10)	C4—H4B	0.9900
P2—O3	1.5337 (11)	С5—Н5А	0.9800
P2—O1	1.5639 (10)	С5—Н5В	0.9800
P2—C1	1.8398 (14)	С5—Н5С	0.9800
C1—N1	1.5070 (17)	N1—H1N	0.84 (2)
C1—C2	1.5471 (19)	N1—H2N	0.91 (2)
C2—C3	1.5264 (19)	N1—H3N	0.88 (2)
C2—H2A	0.9900	01—H10	0.79 (2)
C2—H2B	0.9900	O3—H3O	0.79 (3)
C3—C4	1.517 (2)	O6—H6O	0.83 (3)

O4—P1—O5	116.59 (6)	С2—С3—НЗА	109.5
O4—P1—O6	112.20 (6)	C4—C3—H3B	109.5
O5—P1—O6	110.42 (6)	С2—С3—Н3В	109.5
O4—P1—C1	109.37 (6)	НЗА—СЗ—НЗВ	108.1
O5—P1—C1	108.06 (6)	C5—C4—C3	114.90 (15)
O6—P1—C1	98.61 (6)	C5—C4—H4A	108.5
O2—P2—O3	116.57 (6)	C3—C4—H4A	108.5
O2—P2—O1	109.77 (6)	C5—C4—H4B	108.5
O3—P2—O1	108.78 (6)	C3—C4—H4B	108.5
O2—P2—C1	109.49 (6)	H4A—C4—H4B	107.5
O3—P2—C1	104.08 (6)	C4—C5—H5A	109.5
O1—P2—C1	107.72 (6)	C4—C5—H5B	109.5
N1-C1-C2	109.71 (11)	H5A—C5—H5B	109.5
N1—C1—P2	108.22 (9)	C4—C5—H5C	109.5
C2—C1—P2	113.48 (10)	H5A—C5—H5C	109.5
N1-C1-P1	106.30 (9)	H5B—C5—H5C	109.5
C2-C1-P1	107.99 (9)	C1—N1—H1N	112.5 (13)
P2—C1—P1	110.90 (7)	C1—N1—H2N	111.0 (13)
C3—C2—C1	118.31 (12)	H1N—N1—H2N	106.4 (19)
C3—C2—H2A	107.7	C1—N1—H3N	112.3 (12)
C1—C2—H2A	107.7	H1N—N1—H3N	106.5 (18)
С3—С2—Н2В	107.7	H2N—N1—H3N	107.9 (18)
C1—C2—H2B	107.7	P2—O1—H1O	111.4 (17)
H2A—C2—H2B	107.1	P2—O3—H3O	117.1 (19)
C4—C3—C2	110.76 (13)	P1—O6—H6O	114.5 (19)
С4—С3—НЗА	109.5		
O2—P2—C1—N1	171.72 (8)	O4—P1—C1—C2	176.54 (9)
O3—P2—C1—N1	46.42 (10)	O5—P1—C1—C2	48.68 (11)
O1—P2—C1—N1	-68.96 (10)	O6—P1—C1—C2	-66.19 (10)
O2—P2—C1—C2	-66.27 (11)	O4—P1—C1—P2	51.62 (9)
O3—P2—C1—C2	168.44 (9)	O5—P1—C1—P2	-76.24 (8)
O1—P2—C1—C2	53.05 (11)	O6—P1—C1—P2	168.90 (7)
O2—P2—C1—P1	55.49 (9)	N1—C1—C2—C3	50.75 (17)
O3—P2—C1—P1	-69.81 (8)	P2-C1-C2-C3	-70.43 (15)
O1—P2—C1—P1	174.81 (7)	P1-C1-C2-C3	166.21 (11)
O4—P1—C1—N1	-65.79 (10)	C1—C2—C3—C4	-173.11 (14)
O5—P1—C1—N1	166.35 (9)	C2—C3—C4—C5	-171.76 (15)
O6—P1—C1—N1	51.49 (10)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
N1—H1N····O4 ⁱ	0.84 (2)	2.02 (2)	2.7584 (16)	146.7 (19)
N1—H2N···O5 ⁱⁱ	0.91 (2)	1.88 (2)	2.7799 (16)	169.4 (19)
N1—H3N····O2 ⁱⁱⁱ	0.88 (2)	1.99 (2)	2.8451 (16)	162.9 (18)
O1—H1O···O2 ⁱⁱⁱ	0.79 (2)	1.85 (3)	2.6297 (15)	167 (3)
O3—H3O···O5 ⁱⁱⁱ	0.79 (3)	1.70 (3)	2.4884 (15)	175 (3)
O6—H6O···O4 ^{iv}	0.83 (3)	1.72 (3)	2.5372 (14)	168 (3)

Symmetry codes: (i) -x+1, -y, -z+1; (ii) x, -y+1/2, z-1/2; (iii) x, -y-1/2, z-1/2; (iv) -x+1, y+1/2, -z+3/2.

Fig. 1

Fig. 2